

Receptor preferences of cysteinyl-leukotrienes in the guinea pig lung parenchyma

Kiyoto Sakata, Magnus Bäck*

Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden Received 6 September 2001; received in revised form 30 November 2001; accepted 7 December 2001

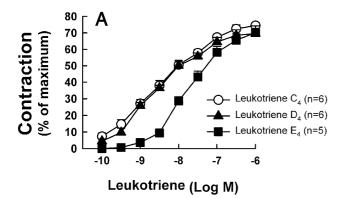
Abstract

Two cysteinyl-leukotriene receptors, $CysLT_1$ and $CysLT_2$ receptors, have been cloned, but the contractions to cysteinyl-leukotrienes in the guinea pig lung parenchyma have been reported to be resistant to $CysLT_2$ receptor antagonism and to be only partially inhibited by $CysLT_1$ receptor antagonism. The receptor preferences of the individual cysteinyl-leukotrienes (leukotriene C_4 , D_4 and E_4) in the guinea pig lung parenchyma were studied in organ baths. $CysLT_1$ receptor antagonists competitively inhibited the contraction to leukotriene E_4 , but exhibited only weak antagonism of contractions to leukotriene C_4 and D_4 . In the presence of the cyclooxygenese inhibitor indomethacin and the nitric oxide synthase inhibitor N^ω -nitro-L-arginine (L-NOARG), the $CysLT_1$ receptor antagonists did not further inhibit the leukotriene D_4 -induced contraction. These results suggest that leukotriene E_4 solely activates a $CysLT_1$ receptor, and that the $CysLT_1$ receptor antagonist-resistant contraction to leukotriene D_4 and C_4 is mediated via another CysLT receptor. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cysteinyl-leukotriene receptor; Lung parenchyma, guinea-pig; Cyclooxygenase; Nitric oxide (NO)

1. Introduction

Two cysteinyl-leukotriene receptors, CysLT₁ and CysLT₂ receptors, have been cloned recently (Heise et al., 2000; Lynch et al., 1999) and selective CysLT₁ receptor antagonists have been established as a new treatment of asthma (Drazen et al., 1999). It has however also been reported that human and porcine pulmonary arteries have a CysLT₁ and CysLT₂ receptor antagonist-insensitive part of the contraction to leukotriene C₄ (Bäck et al., 2000a,b), suggesting the presence of further CysLT receptor subtypes.


The guinea pig lung parenchyma, which is one of the most sensitive preparations with respect to contractile effects of cysteinyl-leukotrienes, has also been proposed to contain a CysLT receptor different from the CysLT₁ and CysLT₂ receptor (Tudhope et al., 1994; Wikström Jonsson et al., 1998). The CysLT₁/CysLT₂ receptor antagonist BAYu9773 (6(R)-(4'-carboxyphenylthio)-5(S)-hydroxy-7(E),9(E),11(Z)14(Z)-eicosatetrenoic acid) either not at all or only slightly inhibits the contraction to leukotriene C₄ and D₄ in the guinea pig lung parenchyma (Tudhope et al., 1994; Wikström Jonsson et al., 1998). In addition, CysLT₁

receptor antagonists have been reported to exert less antagonism of contractions to leukotriene C_4 and D_4 in this preparation compared with other preparations, such as the guinea pig trachea and ileum (Norman et al., 1987; Tudhope et al., 1994; Wikström Jonsson et al., 1998). However, an initial report using the CysLT₁ receptor antagonist ICI-198,615 (1-((2-methoxy-4-(((phenylsulfonyl)amino)carbonyl)-phenyl)methyl)-1H-indazol-6-yl)carbamic acid cyclopentyl ester) in the guinea pig lung parenchyma reported a p A_2 value of 9.5 against leukotriene D_4 -induced contractions (Snyder et al., 1987).

What has been missing in the studies of the purported new CysLT receptor in the guinea pig lung parenchyma is conclusive pharmacological characterisation. In fact, both CysLT₁ and CysLT₂ receptors were firstly characterised using pharmacological techniques, having different preferences to cysteinyl-leukotrienes and their antagonists (Dahlén, 2000). These results have contributed to recognise the two cloned receptors as CysLT₁ and CysLT₂ receptors (Heise et al., 2000; Lynch et al., 1999).

The aim of this study was to pharmacologically characterise the purported new CysLT receptor in the guinea pig lung parenchyma by performing an overall assessment of how different CysLT₁ receptor antagonists affect the contractile responses to cysteinyl-leukotrienes. In addition, since it has

^{*} Corresponding author. Tel.: +46-8-728-7222; fax: +46-8-300-619. E-mail address: Magnus.Back@imm.ki.se (M. Bäck).

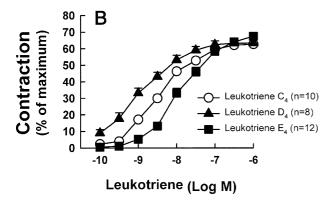


Fig. 1. Concentration—response curves for the contractile effects of leukotriene C_4 , D_4 and E_4 in the guinea pig lung parenchyma in the absence (A) and presence (B) of L-serine borate (45 mM) and L-cysteine (5 mM). L-serine borate and L-cysteine were applied 30 min before the addition of leukotrienes. Each point represents the mean \pm S.E.M, with the number of experiments indicated in parentheses.

been reported that the effects of cysteinyl-leukotrienes in the guinea pig lung parenchyma are partially mediated by cyclooxygenase products (Norman et al., 1987; Weichman et al., 1982), the effect of cyclooxygenase inhibition was also assessed.

2. Materials and methods

2.1. Tissue preparation

Male Dunkin Hartley guinea pigs (300-450 g) were asphyxiated by CO_2 and bled. The lung parenchyma was cut parallel to the peripheral margins of the lobes into four strips, each having a cross-sectional area of approximately 10 mm^2 and a length of about 25 mm. The experiments were approved by the local committee for animal experiments (N317/98).

2.2. Tissue bath experiments

Lung parenchymal preparations were placed in 5-ml organ baths containing Tyrode's solution (composition in mM: NaCl 149.2, KCl 2.7, NaHCO₃ 11.9, CaCl₂ 1.8, MgCl₂

0.5, NaH₂PO₄ 0.4 and glucose 5.5) gassed with 6.5% CO₂ in O₂ at 37 °C. Resting tensions were kept 4 mN. Mechanical responses were recorded isometrically via Grass FT-03 force-displacement transducers connected to an EMKA data acquisition system (EMKA, Paris, France).

The bath solution was initially changed at 10-min intervals during a 90-min equilibration period. Tissue reactivity was assessed by cumulative challenge with histamine (0.3–30 μ M). Leukotriene C₄, D₄ and E₄ were added as cumulative concentrations in each experiment. Drugs were administered 30 min prior to application of leukotrienes.

When the cysteinyl-leukotriene contraction reached a plateau at the end of the cumulative dosing, a maximal contraction was determined by simultaneous addition of histamine (1 mM), acetylcholine (1 mM) and KCl (40 mM). The contractions to histamine, acetylcholine and KCl were 3.5 ± 0.4 mN (n=6), 4.0 ± 0.7 mN (n=6) and 3.5 ± 0.5 mN (n=5) after challenge with leukotriene C₄, D₄ and E₄, respectively (P>0.05). In addition, the different treatments did not significantly alter the contractions to histamine, acetylcholine and KCl (data not shown).

2.3. Drugs

Acetylcholine, histamine, indomethacin, L-serine, boric acid, L-cysteine and N^{ω} -nitro-L-arginine (L-NOARG) were obtained from Sigma (St. Louis, MO, USA). Leukotriene C₄, D₄ and E₄ were from Cascade Biochem (Reading, UK) or Cayman Chemicals (Ann Arbor, MI, USA). Zafirlukast was kindly provided from Astra Zeneca (Alderley, UK), MK-571 (3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)((3-(dimethylamino-3-oxopropyl)thio)methyl)thio propanoic acid) was from Merck Frosst (Montreal, Canada), pobilukast was from Smith Kline Beecham (Swedeland, PA, USA), pranlukast was from Ono Pharmaceutical (Osaka, Japan).

L-serine borate was prepared from equimolar concentrations of L-serine and boric acid dissolved in distilled water and buffered at pH 7.4 with NaOH. L-cysteine, acetylcholine and histamine were dissolved in Tyrode's solution. Zafirlukast, pranlukast and pobilukast were dissolved in dimethylsulfoxide. Indomethacin was dissolved in 10% ethanol and 10% 1 M Tris (pH 8.0) in distilled water. MK-571 and KCl

Table 1 The pD_2 for the contraction to leukotriene C_4 , D_4 and E_4 in the guinea pig lung parenchyma in the absence or presence of L-serine borate (45 mM) and L-cysteine (5 mM)

	Control	n	L-SeBo+L-cys	n
Leukotriene C ₄	8.21 ± 0.11	6	8.10 ± 0.07^{a}	10
Leukotriene D ₄	8.28 ± 0.08	6	8.70 ± 0.12^{b}	8
Leukotriene E ₄	$7.41 \pm 0.03^{a,c}$	5	$7.55 \pm 0.09^{a,c}$	12

Each data represents the mean \pm S.E.M. of n experiments. L-serine borate (L-SeBo, 45 mM) and L-cysteine (L-cys, 5 mM) were applied 30 min before the addition of leukotrienes.

- ^a P < 0.05 vs. leukotriene D₄.
- ^b P < 0.05 vs. control.
- ^c P<0.05 vs. leukotriene C₄ (Tukey test).

were dissolved in distilled water. The final concentrations of ethanol or dimethylsulfoxide in the bath were always below 0.1%. Stock solutions of leukotriene C_4 , D_4 and E_4 were kept in 50% ethanol in distilled water and concentrations were checked by UV-spectrometry.

2.4. Data analysis

All results are expressed as means \pm S.E.M. Contractile responses are expressed as percent of the final contraction to histamine, acetylcholine and KCl. The maximal contraction

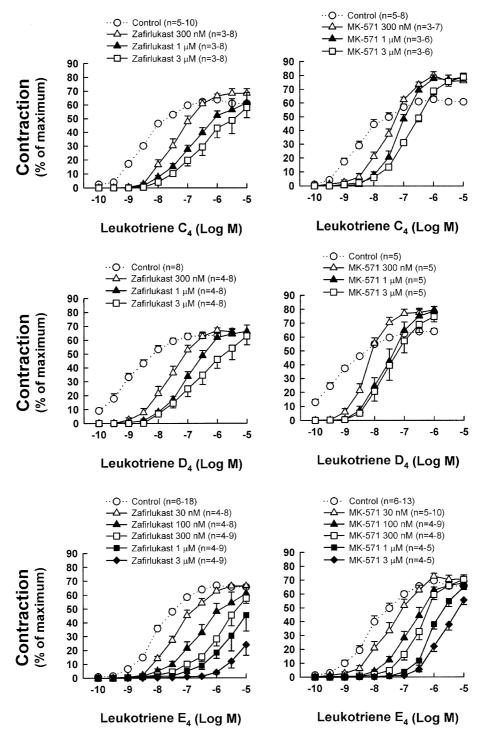


Fig. 2. Effects of the $CysLT_1$ receptor antagonists, zafirlukast and MK-571 on the contractions induced by cysteinyl-leukotrienes in the guinea pig lung parenchyma in the presence of L-serine borate (45 mM) and L-cysteine (5 mM). $CysLT_1$ receptor antagonists, L-serine borate and L-cysteine, were applied 30 min before the addition of leukotrienes. Each point represents the mean \pm S.E.M, with the number of the experiments indicated in parentheses. Smaller number in parentheses indicates the number of experiments at high concentrations (3, 10 μ M) of leukotrienes.

 $(E_{\rm max})$ is expressed as the mean of the contractions induced by the highest concentration of the agonist in each individual concentration-response curve. The EC₅₀ was calculated by linear regression from each concentration-response curve. The pD_2 was calculated as the negative log of the EC₅₀. In experiments with CysLT₁ receptor antagonists, a dose ratio of EC50 in the presence and absence of antagonists was calculated for each experiment relative to the paired control. The pK_B was calculated for each antagonist concentration as the negative log of following equation: (antagonist concentration)/(dose ratio -1). The p A_2 was determined as the mean of all p $K_{\rm B}$ according to MacKay (1978). In addition, in order to confirm linearity, Schild plot analysis was performed on the means of the dose ratios (Arunlakshana and Schild, 1959). Statistically significant differences were determined by Student's t-test or one-way analysis of variances (ANOVA) followed by either Dunnett's or Tukev test, as appropriate. A P value of less than 0.05 was considered significant.

3. Results

3.1. Effects of inhibitors of cysteinyl-leukotriene metabolism

In the absence of metabolic inhibitors for cysteinyl-leukotrines, leukotriene C_4 , D_4 and E_4 contracted the guinea pig lung parenchyma (Fig. 1 and Table 1). The p D_2 for leukotriene E_4 were significantly lower than those for leukotriene C_4 and D_4 (Table 1) whereas there was no significant difference between the $E_{\rm max}$ for leukotriene C_4 (74.1 \pm

Table 2 Effects of CysLT₁ receptor antagonists on the $E_{\rm max}$ (%) induced by cysteinyl-leukotrienes in the guinea pig lung parenchyma in the presence of L-serine borate (45 mM) and L-cysteine (5 mM)

Compound	nM	Leukotriene C ₄	n	Leukotriene D ₄	n	Leukotriene E ₄	n
Vehicle		62.8 ± 1.1	10	63.5 + 2.4	8	66.9 ± 1.4	18
Zafirlukast	30					63.5 ± 2.4	8
	100					57.8 ± 3.9	8
	300	66.7 ± 1.4	8	67.3 ± 1.8	8		
	1000	58.5 ± 3.2	8	65.3 ± 2.5	8		
Vehicle		62.8 ± 2.1	8	64.2 ± 2.1	5	69.7 ± 1.3	13
MK-571	30					73.2 ± 2.2	10
	100					65.9 ± 2.4	9
	300	80.7 ± 2.5^{a}	7	79.6 ± 2.4^{a}	5	67.4 ± 2.2	8
	1000	80.3 ± 1.9^{a}	6	$78.7 \pm 3.4^{\mathrm{a}}$	5		
Vehicle				60.3 ± 4.6	4		
Pranlukast	1000			79.1 ± 4.7^{a}	3		
Pobilukast	1000			80.7 ± 1.6^{a}	3		

CysLT₁ receptor antagonists, L-serine borate and L-cysteine were applied 30 min before the addition of leukotrienes. Each data represents the mean \pm S.E.M. of n experiments.

Table 3 Effects of CysLT₁ receptor antagonists on the pD_2 for the contraction to cysteinyl-leukotrienes in the guinea pig lung parenchyma in the presence of L-serine borate (45 mM) and L-cysteine (5 mM)

Compound	nM	Leukotriene	n	Leukotriene D ₄	n	Leukotriene E ₄	n
		C_4		D_4		E ₄	
Vehicle		8.44 ± 0.06	10	8.92 ± 0.07	8	7.95 ± 0.06	18
Zafirlukast	30					7.22 ± 0.13^{a}	8
	100					6.40 ± 0.18^{a}	8
	300	7.42 ± 0.13^{a}	8	7.60 ± 0.16^{a}	8		
	1000	6.74 ± 0.12^{a}	8	6.96 ± 0.11^{a}	8		
Vehicle		8.41 ± 0.11	8	9.18 ± 0.11	5	8.01 ± 0.12	13
MK-571	30					7.45 ± 0.16^{a}	10
	100					6.75 ± 0.12^{a}	9
	300	7.46 ± 0.10^{a}	7	8.18 ± 0.05^{a}	5	6.46 ± 0.12^{a}	8
	1000	7.12 ± 0.06^a	6	7.54 ± 0.14^a	5		
Vehicle				8.59 ± 0.19	4		
Pranlukast	1000			7.36 ± 0.13^{a}	3		
Pobilukast	1000			7.60 ± 0.20^a	3		

CysLT₁ receptor antagonists, L-serine borate and L-cysteine were applied 30 min before the addition of leukotrienes. Each data represents the mean \pm S.E.M. of n experiments.

1.82%, n=6), D₄ (70.1 \pm 2.91%, n=6) and E₄ (70.3 \pm 4.10%, n=5). In the presence of the metabolic inhibitors, L-serine borate (45 mM) and L-cysteine (5 mM)(Bäck et al., 2001), the pD₂ for leukotriene D₄ were significantly higher than those for either leukotriene C₄ or E₄ and those for leukotriene C₄ were significantly higher than those for leukotriene E₄ (Fig. 1B and Table 1). The metabolic inhibitions significantly increased the pD₂ for leukotriene D₄ (Fig. 1 and Table 1).

3.2. Effects of CysLT₁ receptor antagonists on cysteinylleukotriene-induced contractions

In the presence of metabolic inhibitors for cysteinylleukotrienes, pretreatment with one of the two CysLT₁ receptor antagonists, zafirlukast or MK-571, inhibited the concentration-response curves for leukotriene E₄ in a competitive manner, with p A_2 of 8.34 ± 0.07 (Fig. 3C) and 7.95 ± 0.09 (Fig. 3D), respectively. MK-571 significantly enhanced the E_{max} for both leukotriene C_4 and D_4 , whereas zafirlukast did not (Fig. 2 and Table 2). Zafirlukast significantly decreased the pD_2 for either leukotriene C_4 or D_4 without affecting the E_{max} , whereas MK-571 significantly decreased the pD_2 and increased the E_{max} (Fig. 2, Tables 2 and 3). The slope of the Schild plot for zafirlukast against leukotriene D₄ did not approach unity (1.34, Fig. 3B). The pA₂ of zafirlukast for leukotriene C_4 (7.55 \pm 0.11, Fig 3A) was significantly lower than those for leukotriene E_4 (8.34 ± 0.07, Fig 3C). Two other CysLT₁ receptor antagonists, pranlukast and pobilukast, also significantly decreased the pD_2 and increased the E_{max} for leukotriene D₄ (Fig. 4 and Tables 2 and 3).

^a P < 0.05 vs. Vehicle (Dunnett's test).

^a P < 0.05 vs. Vehicle (Dunnett's test).

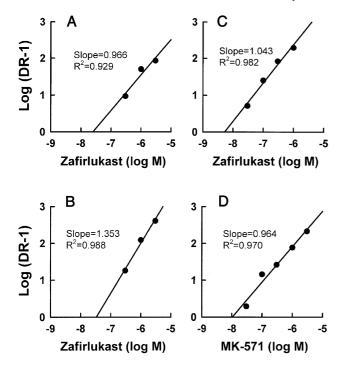


Fig. 3. Schild plot analysis of the CysLT₁ receptor antagonist zafirlukast on the contractions induced by leukotriene C_4 (panel A), D_4 (panel B) and E_4 (panel C). Panel D show the Schild plot analysis of the CysLT₁ receptor antagonist MK-571 on the contractions induced by leukotriene E_4 . All experiments were performed in the presence of L-serine borate (45 mM) and L-cysteine (5 mM). Zafirlukast, MK-571, L-serine borate and L-cysteine were applied 30 min before the addition of leukotrienes. Each point represents the mean of log of (dose ratio -1).

Fig. 4. Effects of the CysLT $_1$ receptor antagonists, pranlukast and pobilukast on the contractions induced by leukotriene D $_4$ in the guinea pig lung parenchyma in the presence of L-serine borate (45 mM) and L-cysteine (5 mM). Pranlukast, pobilukast, L-serine borate and L-cysteine were applied 30 min before the addition of leukotrienes. Each point represents the mean \pm S.E.M, with the number of experiments indicated in parentheses.

3.3. Effects of cyclooxygenase inhibition and nitric oxide synthase inhibition on cysteinyl-leukotriene-induced contractions

In the presence of metabolic inhibitors for cysteinylleukotrienes, the cyclooxygenase inhibitor indomethacin (10 μ M) significantly decreased the p D_2 and slightly but significantly potentiated the $E_{\rm max}$ for leukotriene D₄ (Fig. 5A and Table 4). The nitric oxide synthase inhibitor L-NOARG (100 μ M) further enhanced the $E_{\rm max}$ without changing the p D_2 for leukotriene D₄ in the presence of indomethacin (Fig. 5A and Table 4). Neither the $E_{\rm max}$ nor the p D_2 for leukotriene D₄ in the presence of the combination of indomethacin and L-NOARG was significantly different from those obtained in

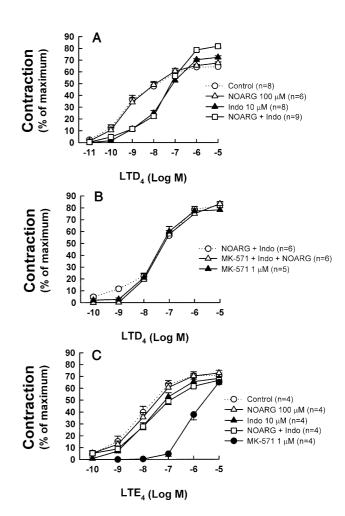


Fig. 5. Effects of indomethacin (10 μM , Indo) alone and the combination of L-NOARG (100 μM , NOARG) with indomethacin on the contraction induced by leukotriene D_4 in the guinea pig lung parenchyma (panel A). Panel B shows the effects of MK-571 (1 μM) in the absence or presence of the combination of L-NOARG and indomethacin. Panel C shows the effects of MK-571, indomethacin alone and the combination of L-NOARG (100 μM) and indomethacin on contraction induced by leukotriene E_4 . MK-571, indomethacin, L-NOARG, L-serine borate (45 mM) and L-cysteine (5 mM) were applied 30 min before the addition of leukotrienes. Each point represents the mean \pm S.E.M, with the number of experiments indicated in parentheses.

Table 4 Effects of indomethacin (Indo, 10 μ M), L-NOARG (NOA, 100 μ M) and MK-571 on the $E_{\rm max}$ and p D_2 for the contractile effects of leukotriene D_4 in the guinea pig lung parenchyma

	n	E _{max}	pD_2
Control	8	64.7 ± 0.95	8.88 ± 0.17
Indo	8	72.4 ± 1.30^{a}	7.37 ± 0.06^{a}
NOA + Indo	8	$81.9 \pm 1.48^{a,b}$	7.24 ± 0.02^{a}
MK-571 + NOA + Indo	8	$83.3 \pm 1.98^{a,b}$	7.21 ± 0.03^{a}
MK-571	8	$78.2 \pm 1.77^{a,b}$	7.31 ± 0.08^{a}

MK-571, indomethacin, L-NOARG, L-serine borate (45 mM) and L-cysteine (5 mM) were applied 30 min before the addition of leukotriene D_4 . Each data represents the mean \pm S.E.M. of n experiments.

the presence of MK-571 (Fig. 5 and Table 4). The combination of these three treatments did not further alter either the E_{max} or the p D_2 (Fig. 5 and Table 4).

Indomethacin significantly decreased the pD_2 for leukotriene E_4 without changing the $E_{\rm max}$ (Fig. 5C). L-NOARG (100 μ M) did not further change the $E_{\rm max}$ and pD_2 in the presence of indomethacin (Fig. 5C). The pD_2 for leukotriene E_4 in the presence of indomethacin and L-NOARG were significantly weaker than those in the presence of MK-571 (1 μ M, Fig. 5C).

4. Discussion

Using different structures of $CysLT_1$ receptor antagonists, it was demonstrated that $CysLT_1$ receptor antagonists inhibited the contractions induced by leukotriene C_4 , D_4 and E_4 in the guinea pig lung parenchyma. However, the contractions to leukotriene E_4 were inhibited more effectively than those induced by either leukotriene C_4 or D_4 , suggesting a differential receptor activation by the individual cysteinyl-leukotrienes.

CysLT₁ receptor antagonists inhibited the contraction to leukotriene E_4 in a competitive manner, indicating that leukotriene E_4 solely activated one CysLT receptor in the guinea pig lung parenchyma. The p A_2 for zafirlukast and MK-571 obtained in this study (8.3 and 8.0, respectively) were similar to their binding affinities to the human cloned CysLT₁ receptor (IC₅₀ of 2 and 10 nM, respectively)(Lynch et al., 1999). Therefore, the receptor mediating the contraction to leukotriene E_4 in the present study is most likely a CysLT₁ receptor.

The less effective antagonism of the contractions to either leukotriene C_4 or D_4 suggests that, in addition to the $CysLT_1$ receptor, also another CysLT receptor is involved in the contractions to these leukotrienes. These results are similar to results from human and porcine pulmonary arteries, which have been reported to contain a CysLT receptor with similar selectivity to cysteinyl-leukotrienes, i.e., stimulated by leukotriene C_4 and D_4 but not by leukotriene E_4 (Bäck et al., 2000a,b; Schellenberg and Foster, 1984).

The cyclooxygenase inhibitor indomethacin induced a rightward shift and enhanced the E_{max} of the concentration response curves for leukotriene D₄, suggesting a modulation by both contractile and relaxant prostanoids. It has previously been reported that in the presence of a cyclooxygenase inhibitor, CysLT₁ receptor antagonists either not at all (Weichman et al., 1982) or slightly (Norman et al., 1987) inhibit the contraction to leukotriene D₄ in the guinea pig lung parenchyma. The present study extends these findings by showing an identical inhibition of pD_2 by indomethacin and CysLT₁ receptor antagonists. Together, these results suggest that release of contractile prostanoids, such as thromboxane A2 (Dahlén et al., 1983), may be linked to a CysLT₁ receptor in the guinea pig lung parenchyma and that the rightward shift of the concentration-response curves for leukotriene D₄ by MK-571 is mainly mediated by inhibition of CysLT₁ receptor-mediated prostanoid release.

The E_{max} for leukotriene C_4 and D_4 were enhanced by pretreatment with MK-571, suggesting that MK-571 inhibited also the release of relaxant prostanoids. However, the enhancement of the E_{max} by pretreatment with indomethacin was less than that obtained with MK-571, and only the combination of indomethacin and L-NOARG could completely mimic the effect of the CysLT₁ receptor antagonist. In addition, MK-571 did not further potentiate the $E_{\rm max}$ in the presence of indomethacin and L-NOARG. These latter observations suggest that release of nitric oxide may also be involved in the enhancement of the E_{max} for leukotriene D₄ observed after treatment with CysLT₁ receptor antagonists in the guinea pig lung parenchyma. CysLT receptors have previously been proposed to be linked to nitric oxide production in the guinea pig pulmonary artery (Sakuma et al., 1987) and the human pulmonary vein (Ortiz et al., 1995).

In addition to MK-571, also two other structurally unrelated CysLT₁ receptor antagonists, pranlukast and pobilukast, enhanced the E_{max} for leukotriene D₄. In contrast, zafirlukast had a different pattern of inhibition on the contraction to either leukotriene C₄ or D₄, since this compound did not alter the $E_{\rm max}$ of the contraction to these leukotrienes. Interestingly, similar differences by CysLT₁ receptor antagonists have been reported in human airway smooth muscle (Panettieri et al., 1998) where pranlukast and pobilukast, but not zafirlukast, inhibited the potentiation of epidermal growth factor-induced proliferation by leukotriene D₄. In addition, Ravasi et al. (2000) also reported that pranlukast and pobilukast competed for the binding of either [³H]leukotriene C₄ or [³H]leukotriene D₄, whereas zafirlukast competed only for the binding of [3H]leukotriene D₄ in human lung parenchyma. Taken together, these results suggest that different CysLT₁ receptor antagonists may recognise different CysLT receptors. It can however not be excluded that there are differences in specificity between the antagonists. For example, MK-571 was recently reported to interact with the receptor for lipoxin A₄ (Gronert et al., 2001).

^a P < 0.05 vs. Control.

^b P < 0.05 vs. Indo (Tukey test).

Previous reports on the effects of CysLT₁ receptor antagonists on leukotriene D₄-induced contractions in the guinea pig lung parenchyma are heterogeneous. For instance, the pK_B or pA_2 of ICI-198,615 for leukotriene D_4 have been reported to be 9.5 (Snyder et al., 1987), 6.3 (Norman et al., 1987), 5.7 (Tudhope et al., 1994) and 7.2 (Wikström Jonsson et al., 1998). One probable reason for these differences is the involvement of the metabolic conversion of cysteinyl-leukotrienes in the guinea pig lung parenchyma (Dahlén et al., 1983). Since leukotriene E_4 and leukotriene D_4 had different preferences for CysLT receptors in the present study, the metabolic conversion may affect the pharmacological results of CysLT receptor antagonists in this preparation. In addition, the involvement of prostanoids is another probable reason for the heterogeneous results, since the cyclooxygenase inhibitor caused profound changes of the potencies of the CysLT₁ receptor antagonists in the guinea pig lung parenchyma (Norman et al., 1987; present study). Thirdly, the concentrations of CysLT₁ receptor antagonists used by different investigators may also contribute to the heterogeneous pharmacological results, since the effects of CysLT₁ receptor antagonists on leukotriene D₄-induced contractions were not competitive in the present study. For example, Tudhope et al. (1994) used only a high concentration (10 μM) of ICI-198,615.

In conclusion, the results of the present study using several concentrations of different CysLT₁ receptor antagonists, suggest that leukotriene E₄ solely activates a CysLT₁ receptor, whereas leukotriene C₄ and D₄ activate also another CysLT receptor in the guinea pig lung parenchyma. Since the contractions to leukotriene C₄ and D₄ in the guinea pig lung parenchyma have been reported not to involve the activation of a CysLT₂ receptor (Tudhope et al., 1994; Wikström Jonsson et al., 1998), leukotriene C₄ and D₄ but not leukotriene E₄ may activate a purported new CysLT receptor. The present observations also suggest that the CysLT₁ receptor antagonist-resistant part of the contraction to leukotriene D₄ can be focused by the combination of indomethacin and L-NOARG. This preparation in the presence of a cyclooxygenase inhibitor and a nitric oxide synthase inhibitor may be a useful tool in search of molecular structures of further CysLT receptors.

Acknowledgements

This study was supported by grants from The Swedish Heart Lung Foundation, The Swedish Medical Research Council (project 71X-9071), The Swedish Foundation for Health Care Sciences and Allergy Research, Ono Pharmaceuticals and Karolinska Institutet.

References

Arunlakshana, O., Schild, H.O., 1959. Some quantitative uses of drug antagonists. Br. J. Pharmacol. 14, 48–58.

- Bäck, M., Norel, X., Walch, L., Gascard, J., de Montpreville, V., Dahlén, S.E., Brink, C., 2000a. Prostacyclin modulation of contractions of the human pulmonary artery by cysteinyl-leukotrienes. Eur. J. Pharmacol. 401, 389–395.
- Bäck, M., Norel, X., Walch, L., Gascard, J., Mazmanian, G., Dahlén, S.E., Brink, C., 2000b. Antagonist resistant contractions of the porcine pulmonary artery by cysteinyl-leukotrienes. Eur. J. Pharmacol. 401, 381– 388
- Bäck, M., Kumlin, M., Cotgreave, I.A., Dahlén, S.E., 2001. An alternative pathway for metabolism of leukotriene D₄: effects on contractions to cysteinyl-leukotrienes in the guinea-pig trachea. Br. J. Pharmacol. 133, 1134–1144
- Dahlén, S.E., 2000. Pharmacological characterization of leukotriene receptors. Am. J. Respir. Crit. Care. Med. 161, S41-S45.
- Dahlén, S.E., Hedqvist, P., Hammarström, S., 1983. Contractile activities of several cysteine-containing leukotrienes in the guinea-pig lung strip. Eur. J. Pharmacol. 86, 207–215.
- Drazen, J.M., Israel, E., O'Byrne, P.M., 1999. Treatment of asthma with drugs modifying the leukotriene pathway. N. Engl. J. Med. 340, 197– 206.
- Gronert, K., Martinsson-Niskanen, T., Ravasi, S., Chiang, N., Serhan, C.N., 2001. Selectivity of recombinant human leukotriene D₄, leukotriene B₄, and lipoxin A₄ receptors with aspirin-triggered 15-epi-LXA₄ and regulation of vascular and inflammatory responses. Am. J. Pathol. 158, 3-9.
- Heise, C.E., O'Dowd, B.F., Figueroa, D.J., Sawyer, N., Nguyen, T., Im, D.S., Stocco, R., Bellefeuille, J.N., Abramovitz, M., Cheng, R., Williams, D.L., Zeng Jr., Z., Liu, Q., Ma, L., Clements, M.K., Coulombe, N., Liu, Y., Austin, C.P., George, S.R., O'Neill, G.P., Metters, K.M., Lynch, K.R., Evans, J.F., 2000. Characterization of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30531–30536.
- Lynch, K.R., O'Neill, G.P., Liu, Q., Im, D.S., Sawyer, N., Metters, K.M., Coulombe, N., Abramovitz, M.D., Figueroa, J., Zeng, Z., Connolly, B.M., Bai, C., Austin, C.P., Chateauneuf, A., Stocco, R., Greig, G.M., Kargman, S., Hooks, S.B., Hosfield, E., Williams Jr., D.L., Ford-Hutchinson, A.W., Caskey, C.T., Evans, J.F., 1999. Characterization of the human cysteinyl leukotriene CysLT₁ receptor. Nature 399, 789–793.
- MacKay, D., 1978. How should values of pA_2 and affinity constants for pharmacological competitive antagonists be estimated? J. Pharm. Pharmacol. 30, 312–313.
- Norman, P., Abram, T.S., Kluender, H.C., Gardiner, P.J., Cuthbert, N.J., 1987. The binding of [³H]leukotriene C₄ to guinea-pig lung membranes: the lack of correlation of LTC₄ functional activity with binding affinity. Eur. J. Pharmacol. 143, 323–334.
- Ortiz, J.L., Gorenne, I., Cortijo, J., Seller, A., Labat, C., Sarria, B., Abram, T.S., Gardiner, P.J., Morcillo, E., Brink, C., 1995. Leukotriene receptors on human pulmonary vascular endothelium. Br. J. Pharmacol. 115, 1382–1386.
- Panettieri, R.A., Tan, E.M., Ciocca, V., Luttmann, M.A., Leonard, T.B., Hay, D.W., 1998. Effects of LTD₄ on human airway smooth muscle cell proliferation, matrix expression, and contraction In vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am. J. Respir. Cell Mol. Biol. 19, 453–461.
- Ravasi, S., Capra, V., Mezzetti, M., Nicosia, S., Rovati, G.E., 2000. A kinetic binding study to evaluate the pharmacological profile of a specific leukotriene C₄ binding site not coupled to contraction in human lung parenchyma. Mol. Pharmacol. 57, 1182–1189.
- Sakuma, I., Gross, S.S., Levi, R., 1987. Peptidoleukotrienes induce an endothelium-dependent relaxation of guinea pig main pulmonary artery and thoracic aorta. Prostaglandins 34, 685–696.
- Schellenberg, R.R., Foster, A., 1984. Differential activity of leukotrienes upon human pulmonary vein and artery. Prostaglandins 27, 475–482.
- Snyder, D.W., Giles, R.E., Keith, R.A., Yee, Y.K., Krell, R.D., 1987. In vitro pharmacology of ICI 198,615: a novel, potent and selective peptide leukotriene antagonist. J. Pharmacol. Exp. Ther. 243, 548– 556.

- Tudhope, S.R., Cuthbert, N.J., Abram, T.S., Jennings, M.A., Maxey, R.J., Thompson, A.M., Norman, P., Gardiner, P.J., 1994. BAY u9773, a novel antagonist of cysteinyl-leukotrienes with activity against two receptor subtypes. Eur. J. Pharmacol. 264, 317–323.
- Weichman, B.M., Muccitelli, R.M., Osborn, R.R., Holden, D.A., Gleason, J.G., Wasserman, M.A., 1982. In vitro and in vivo mechanisms of
- leukotriene-mediated bronchoconstriction in the guinea pig. J. Pharmacol. Exp. Ther. 222, 202-208.
- Wikström Jonsson, E., Rosenqvist, U., Dahlén, S.E., 1998. Agonist and antagonist activities of the leukotriene analogue BAY u9773 in guinea pig lung parenchyma. Eur. J. Pharmacol. 357, 203–211.